
Prism: An AI System for
Smart Contract Security Testing

Abstract—In this paper, we present Prism: an AI-enhanced
system that integrates machine learning with Echidna’s powerful
fuzzing capabilities to create a comprehensive smart contract
security testing framework. Our system automates test case
generation, vulnerability detection, and security analysis while
maintaining high precision. By leveraging Claude 3.5 Sonnet’s
advanced capabilities through specialized prompt engineering,
we enable intelligent analysis of smart contract behavior and
automatic generation of detailed test cases. The resulting system
demonstrates significant improvements over traditional testing
approaches, including enhanced detection of complex vulnera-
bilities, reduced false positives, and streamlined workflow inte-
gration. This work addresses a critical need in the blockchain
industry for more sophisticated and automated security testing
tools that can keep pace with the growing complexity of smart
contracts.

Index Terms—Blockchain, Smart Contract Security, Echidna

I. INTRODUCTION

In today’s technological landscape, smart contracts represent
one of the fundamental pillars of the blockchain revolution
[1]–[5], promising to automate and make agreements and
transactions immutable through self-executing code. However,
this immutability, which represents one of their main strengths,
becomes critical when the code contains vulnerabilities. Once
deployed on the blockchain, a vulnerable smart contract cannot
be easily modified, making the pre-deployment testing phase
crucial.

Smart contracts present a major challenge to developers and
security researchers alike. The growing use of smart contracts
in critical systems collides with the difficulty of ensuring their
security [6], [7]. On the one hand, the growing adoption of this
technology has led to an exponential increase in their use in
financial applications, governance systems, and other critical
sectors. However, the complexity of their secure development
remains a significant obstacle. Developers often struggle to
balance tight timelines with ensuring code security.

A particularly concerning aspect is the widespread tendency
among developers to underestimate or even omit the testing
phase. This phenomenon can be attributed to several factors,
such as pressure to quickly release code into production,
complexity in identifying and testing all possible vulnerabil-
ity scenarios, lack of familiarity with smart contract-specific
testing tools, and perception of testing as a time-consuming
activity that slows down the development process.

The consequences of this lack of testing have become
dramatic in recent years. The DeFi sector alone has suffered
losses that amount to billions of dollars due to vulnerabilities
in smart contracts. According to data from Rekt News [8],

the most significant documented hacks total over $6 billion in
losses, with individual attacks exceeding $600M, as shown in
Table I.

TABLE I
TOP 10 HACKS AND EXPLOITS BY VALUE

Platform/Entity Amount (USD) Date
Ronin Network $624,000,000 03/23/2022
Poly Network $611,000,000 08/10/2021
BNB Bridge $586,000,000 10/06/2022
SBF $477,000,000 11/12/2022
Wormhole $326,000,000 02/02/2022
DMM Bitcoin $304,000,000 05/30/2024
WazirX $235,000,000 07/18/2024
Gala Games $216,000,000 05/20/2024
Mixin Network $200,000,000 09/23/2023
Euler Finance $197,000,000 03/13/2023

These incidents not only caused direct financial losses, but
also undermined user trust in blockchain technology as a
whole. The frequency and magnitude of these attacks highlight
a critical gap in the security practices of smart contract
development.

In this context, there is a clear need for tools that can
automate and simplify the smart contract testing process. An
automated system integrating artificial intelligence could re-
duce developers’ manual workload, proactively identify poten-
tial vulnerabilities, automatically generate comprehensive test
cases, provide an additional security layer before deployment,
and help prevent catastrophic financial losses through early
detection of vulnerabilities.

This work aims to address these challenges by proposing
a system that integrates artificial intelligence with Echidna,
a powerful fuzzing framework for smart contracts. The main
objectives are the following.

1) Develop an automated system for smart contract security
testing

2) Integrate intelligent analysis capabilities through ad-
vanced AI models

3) Simplify the test case generation process
4) Provide a tool accessible even to developers with limited

testing experience

The paper is organized as follows. In Section II, related
work concerning AI-based smart contract security testing is
discussed. In Section III, the problem statement is provided.

In Section IV, the proposed method is illustrated. In Section
V, the implementation of the proposed method is detailed. In
Section VI, its performance evaluation is presented and the
results are discussed. Finally, Section VII concludes the paper
with some ideas about future work.

II. RELATED WORK

This work on AI-enhanced fuzzing for smart contract testing
builds upon and intersects with several key research areas:
smart contract fuzzing techniques, applications of artificial
intelligence in security testing, and empirical studies of vul-
nerability detection.

A. Smart Contract Fuzzing

Property-based fuzzing has emerged as a powerful technique
for smart contract testing. The Echidna fuzzer [9] pioneered
this approach for Ethereum smart contracts by enabling auto-
mated testing against user-defined invariants. Several works
have extended fuzzing capabilities. For example, Torres et
al. [10] developed ConFuzzius, integrating genetic algorithms
with constraint solving to improve test case generation, while
Wüstholz and Christakis [11] introduced Harvey, a greybox
fuzzer that achieves greater coverage through sophisticated
seed selection strategies.

More recent fuzzing innovations include coverage-guided
approaches and adaptive fuzzing techniques [12]. However,
these approaches continue to depend on manually crafted prop-
erties and lack the automated learning capabilities introduced
by the AI-enhanced method proposed in this paper. Our work
advances the state-of-the-art by introducing intelligent test
property generation and dynamic fuzzing strategy adaptation.

While fuzzing focuses on dynamic test generation, comple-
mentary approaches have emerged to strengthen smart contract
testing. In particular, Banescu et al. [7] improve mutation
testing to support smart contract auditing, providing auditors
with specialized mutation operators to identify potential vul-
nerabilities during code inspection.

B. AI Applications in Security Testing

The integration of artificial intelligence with security testing
represents an emerging frontier with significant potential.
Zhang et al. [13] demonstrated that traditional automated tools
struggle with semantically complex vulnerabilities, providing
strong motivation for AI-assisted approaches. A recent work
by Liu et al. [14] showed promising results using deep learning
for vulnerability detection, though their approach focused on
static analysis rather than dynamic testing.

C. Empirical Foundations

Several comprehensive studies inform our approach.
Durieux et al. [15] evaluated multiple security tools across
47,587 smart contracts, while Zhou et al. [16] analyzed 181
real-world DeFi incidents, revealing critical gaps in current de-
tection capabilities. Particularly relevant is Perez and Livshits’
finding that only 1.98% of tool-reported vulnerabilities led to
actual exploits citeperez2021, highlighting the need for more
precise detection methods.

D. Hybrid Approaches

While researchers have explored various hybrid approaches
to smart contract testing, the integration of AI with property-
based fuzzing remains largely unexplored. Ren et al. [17]
established evaluation methodologies for security tools but did
not address AI-enhanced test generation. Our work bridges this
gap by combining machine learning techniques with Echidna’s
fuzzing capabilities, creating a more powerful and automated
testing framework.

E. Research Gaps and Our Contributions

The literature reveals several critical gaps that our work
addresses:

1) Limited Intelligence in Fuzzing: Current fuzzers lack
sophisticated learning capabilities for test strategy adap-
tation

2) Manual Property Definition: Existing tools heavily rely
on manually crafted test properties

3) Inefficient Test Generation: Current approaches do not
effectively utilize historical vulnerability data

4) Coverage Limitations: Traditional fuzzers struggle to
reach deep program states without intelligent guidance

This work represents a step forward in automated smart
contract testing, combining the systematic exploration capa-
bilities of fuzzing with the adaptive intelligence of machine
learning algorithms. Our approach maintains the rigorous
testing characteristics of Echidna while introducing AI-driven
improvements in test generation, property synthesis, and strat-
egy adaptation.

When combined with complementary approaches like
Fukuchi et al.’s [6] secure bug bounty platform, which ensures
safe and fair disclosure of discovered vulnerabilities, our
approach contributes to building a more comprehensive secure
ecosystem for smart contract development and testing.

III. PROBLEM STATEMENT

Self-executing smart contracts with terms directly written
into code, have revolutionized blockchain applications but also
introduced new security challenges. Due to their immutable
nature and direct control over financial assets, security vulner-
abilities can have catastrophic consequences.

In the following, the most common vulnerabilities are
described.

1) Reentrancy Attacks: A reentrancy attack occurs when
an external contract makes recursive calls to drain funds by
exploiting inconsistent state updates, allowing the attacker to
repeatedly withdraw assets before the victim contract’s balance
is updated.

2) Integer Overflow/Underflow: Integer overflow/underflow
occurs when arithmetic operations attempt to produce a nu-
meric value outside the valid range of the data type, causing
the number to “wrap around” to an unintended value - a critical
vulnerability in smart contracts where unchecked arithmetic
can lead to unexpected behavior, particularly in token balance
and transaction calculations.

Static Analysis Guideline Generation Test Generation Dynamic Analysis

Fig. 1. Smart Contract Analysis Pipeline

3) Access Control Issues: Improper implementation of ac-
cess controls can lead to unauthorized actions. Access control
vulnerabilities can manifest in various ways: managing priv-
ileged functions like pausing the contract, controlling critical
parameters such as fee rates, or managing whitelists for special
permissions.

4) Front-Running: Front-running vulnerabilities occur
when miners or other participants can observe pending trans-
actions and manipulate their ordering for profit. A malicious
actor could monitor pending transactions, copy a valid solu-
tion, and submit their own transaction with a higher gas price,
ensuring their transaction is processed first.

5) Oracle Manipulation: Smart contracts often rely on
oracles for external data like price feeds, making them vul-
nerable to manipulation. Attackers can manipulate these price
feeds through flash loans to artificially move market prices,
trigger forced liquidations, and profit from the resulting price
discrepancies.

6) Unchecked External Calls: Unchecked external calls
represent a significant vulnerability in smart contracts that
interact with other contracts or tokens. This oversight can lead
to inconsistent contract state when transfers fail silently, partic-
ularly problematic in token transfers where failed transactions
might cause accounting errors.

7) Gas Limitations: Smart contracts face inherent limi-
tations due to Ethereum’s block gas limits, and unbounded
loops present a particular risk. As arrays expand, functions
may eventually require more gas than the block limit allows,
effectively breaking contract mechanisms.

8) Denial of Service (DoS): Denial of Service vulnerabili-
ties in smart contracts often stem from resource exhaustion
mechanisms. When such situations occur, the contract be-
comes effectively frozen, preventing critical operations from
being processed.

9) Logic Errors: Logic errors in smart contracts can lead
to significant financial losses through incorrect calculations
or flawed business logic implementation. Such mathematical
errors are particularly dangerous in financial contracts where
they can lead to incorrect token distributions or unfair reward
allocations.

10) Timestamp Manipulation: Smart contracts that rely on
block timestamps for critical timing operations face potential
manipulation risks. Miners have some flexibility in setting
block timestamps, typically allowing variations of several
seconds to a few minutes, which can undermine time-sensitive
operations.

IV. PROPOSED METHOD

We propose an AI-enhanced smart contract analysis pipeline
that combines static analysis, AI-driven test generation, and
dynamic testing. Although the stages are executed sequentially,
each plays a distinct role in the comprehensive security assess-
ment, and some stages function independently of the preceding
steps.

The pipeline for smart contract analysis consists of four
primary stages, as illustrated in Figure 1.

A. Static Analysis

Static Analysis leverages Slither [18] for comprehensive
vulnerability detection and code quality assessment. The pro-
cess constructs control flow graphs to analyze smart contracts
across multiple security dimensions, identifying critical issues
such as reentrancy vulnerabilities, unchecked call returns, and
access control weaknesses.

Beyond security vulnerabilities, the analysis evaluates code
patterns that could present maintenance challenges, including
state variable shadowing and complex function interactions.

Each finding undergoes severity classification based on
exploitation likelihood, potential impact, and historical prece-
dent, with results provided alongside detailed remediation
guidance.

B. Guideline Generation

The framework implements an AI-driven approach that uses
large language models (LLMs) through sophisticated prompt
engineering techniques. Operating independently of the static
analysis results, the chosen model directly analyzes the smart
contract source code.

The model’s extensive context window enables comprehen-
sive analysis of large smart contract codebases in a single
pass. The prompt engineering strategy systematically guides
analysis through layered dimensions - from granular function
behavior to protocol-wide security implications. It structures
the investigation across behavioral patterns, state transitions,
edge cases, and economic attack vectors while ensuring com-
prehensive coverage of technical vulnerabilities, cross-function
interactions, and business logic integrity.

The methodology emphasizes an exhaustive examination
of security boundaries, temporal dependencies, and external
integrations through targeted prompting focused on specific
attack surfaces and interaction scenarios.

C. Test Generation

The test generation phase leverages language model ca-
pabilities through a distinct prompt engineering strategy to
transform the analyzed guideline into comprehensive Echidna

test files. This AI-driven approach allows for intelligent inter-
pretation of guidelines, developing specific test scenarios, and
defining properties to validate.

The prompt engineering methodology focuses on structural
and syntactic aspects to ensure the generation of robust test
files that include contract initialization, property-based test
cases, and state manipulation functions. By utilizing language
model capabilities in both phases, the system maintains consis-
tency in understanding and validating contract behavior while
employing phase-specific prompting strategies.

D. Dynamic Analysis

The framework incorporates property-based fuzzing tech-
niques for systematic testing, leveraging both directed and
undirected fuzzing with coverage-guided feedback loops to
explore the contract’s state space.

The fuzzing engine combines random mutation with
constraint-based generation to target boundary conditions,
integer ranges, and complex data structures, while weighting
transaction sequences towards high-impact state transitions
and known vulnerability patterns.

Coverage analysis tracks line, branch, and state coverage
through instrumented execution traces, while path coverage is
measured through dynamic symbolic execution. The frame-
work implements mutation coverage through systematic fault
injection, mapping the full space of valid state transitions and
cross-function interactions.

The dynamic analysis component provides property test
results, minimized reproduction sequences for failures, and
state delta analysis. Gas consumption analytics track both
average and worst-case scenarios across different network
conditions, while coverage reporting includes visualizations
of explored vs. unexplored paths to guide additional testing
efforts.

V. IMPLEMENTATION

We implemented the proposed pipeline using Python 3.8+ as
the primary development language, integrating the Anthropic
Claude API [19] for intelligent analysis and test generation,
Slither [18] for static analysis capabilities, Echidna [20] for
property-based fuzzing, and Gradio [21] for the web interface.
The architecture follows a pipeline approach, with each com-
ponent operating independently while maintaining data flow
consistency through standardized interfaces.

A. Static Analysis Integration

The static analysis module, illustrated in Figure 2, leverages
Slither’s capabilities through a Python wrapper that handles
contract pre-processing, analysis execution, and results pro-
cessing. The implementation includes automated Solidity ver-
sion detection and compiler configuration, enabling seamless
processing of contracts targeting different compiler versions.

The module executes multiple security detectors in parallel,
optimizing analysis performance while maintaining compre-
hensive coverage. The results are structured in JSON format,
providing detailed vulnerability findings with severity levels
and remediation suggestions.

Smart Contract
Source

Version Detection
& Preprocessing

Parallel Security
Analysis

Results Processing

JSON Output

Solidity Version

Compiler Config

Security Detectors

Fig. 2. Static Analysis Process

B. AI-Driven Analysis System

The system, as illustrated in Figure 3, implements two
sophisticated prompt engineering approaches using Claude 3.5
Sonnet.

The first system prompt guides the model through a sys-
tematic contract analysis process, focusing on function iden-
tification, comprehensive testing strategies, state analysis, and
edge case identification. A small portion of the system prompt
is illustrated in Listing 1. It evaluates both individual function
behaviors and their interactions within the broader context of
the contract, producing a detailed assessment of the contract’s
security, efficiency, and correctness.

1 Contract Analysis Process
2

3 1. Function Identification:
4 - Identify all public and external functions in

the contract.
5 - Map out the complete interaction flow between

functions
6 - Identify all entry points that external users/

contracts can interact with
7 - Document function modifiers and access controls
8 - ...
9

10 2. Comprehensive Testing:
11 - Test each function individually.
12 - Test functions in various sequences and

combinations.
13 - Consider all possible interactions between

functions
14 - Test contract interactions with external

protocols/contracts
15 - Verify behavior in different network conditions

(high gas, network congestion)
16 - ...
17

18 3. Test for unintended behaviors:
19 - Check off-by-one errors
20 - Verify arithmetic operations behave correctly
21 - Test boundary conditions extensively
22 - Verify state transitions match specifications
23 - ...
24

25 [Additional specifications...]

Listing 1. Guideline Generation Prompt

The second system prompt, a small portion of which is
illustrated in Listing 2, specifically targets the generation of
Echidna test files. It transforms the analysis results into com-
prehensive test suites that evaluate all possible function combi-
nations, state transitions, and critical states in the contract. The
prompt enforces strict requirements for property-based testing,
ensuring that all test functions follow Echidna’s specifications,
including proper initialization, handling of internal functions,
and management of contract state.

1 The user will provide you with a Solidity {Contract}
and a {Use case}, that you must follow,
containing [List of Critical Functions], [
Internal Functions and How to Reproduce Calls],
[Property Combos] and [Edge Cases to Consider].

2

3 Your task is to create a perfect Echidna test file
that evaluates all possible function
combinations, state transitions, and critical
states in the contract, according to the {Use
case} provided.

4

5 !!!IMPORTANT:
6 You MUST, at least, write properties to test ALL [

Internal Functions and How to Reproduce Calls]
and ALL [Property Combos].

7

8 !!!IMPORTANT:
9 Echidna requires a constructor without input

arguments. If your contract needs specific
initialization, you should do it in the
constructor. There are some specific addresses
in Echidna: ‘0x30000‘ calls the constructor
while ‘0x10000‘, ‘0x20000‘, and ‘0x30000‘
randomly call other functions.

10

11 !!!IMPORTANT:
12 You cannot call an internal function directly.

Instead, you must follow the appropriate steps
in {Use case} under [Internal Functions and How
to Reproduce Calls] to trigger the contract to
call it. For example, if an internal function is
called when certain conditions are met, you
will need to interact with the contract’s public
or external functions in a way that meets those
conditions. This will cause the internal
function to execute as part of the contract’s
normal flow.

13

14 Echidna Specifics:
15 - [Properties] Utilize Echidna’s properties by

creating functions that:
16 - Have no arguments.
17 - Return a boolean value (true if the property

holds).
18 - Have names starting with ‘echidna_‘.
19 - ...
20

21 [Additional specifications...]

Listing 2. Test File Generation Prompt

AI integration is implemented through a dedicated API
client that handles request rate limiting, context management
for large contracts, and response validation. The system main-
tains a consistent state through the analysis pipeline, ensuring
that insights from the initial analysis phase are effectively
translated into concrete test cases.

AI API Integration Layer

Smart Contract

Guideline
Generation

Test File
Generation

Test File, YAML,
Command

’Guideline’
System Prompt

’Specific
Test File’

System Prompt

Fig. 3. AI-Driven Analysis Pipeline

C. Dynamic Analysis Implementation

As illustrated in Figure 4, the dynamic analysis component
executes Echidna-based property testing through a streamlined
core orchestrator.

The implementation follows a systematic process. First, the
contract processing stage extracts the smart contract name
using utility functions and saves the user’s contract code to
the specified output directory. Second, during test artifact
generation, the system parses the AI response using regular
expressions to extract the Solidity test code, configuration
settings in YAML format, and the execution command. These
components are then saved as test files and configuration in
the output directory.

In the final test execution phase, the system validates
the Echidna command for safety, constructs the full execu-
tion command with the proper directory context, executes it
through a subprocess with output capture, and handles any
execution errors while returning detailed feedback.

The implementation emphasizes safety and error handling,
including input validation and secure command execution. It
maintains modularity through separation of concerns between
file operations and test execution logic.

D. User Interface Implementation

The interface is built using Gradio, implementing real-time
contract analysis feedback and interactive code submission ca-
pabilities. The UI components are structured to provide imme-
diate feedback while maintaining a clear separation between

AI Generated
Test File

Test File Processing

Test Execution

Execution Results

Extract
Contract Name

Subprocess
Execution

Fig. 4. Dynamic Analysis Process

analysis stages. The implementation focuses on providing a
seamless user experience during complex analysis tasks, with
integrated error reporting and suggestions for improvement.

VI. EXPERIMENTAL EVALUATION

The evaluation of the proposed system acknowledges its
statistical nature, where the tests explore the contract state
space through random exploration. Although not guaranteeing
complete coverage, this approach effectively identifies po-
tential vulnerabilities and behavioral anomalies. The system
serves as a developer’s aid rather than a complete substitute for
manual testing and auditing, complementing traditional secu-
rity practices with automated analysis capabilities. Developers
should verify and interpret the test results, add test cases for
known edge cases, and implement additional security measures
as needed.

A. Test Case Analysis

We evaluated the system using three smart contracts of
increasing complexity. These include a simple counter with
edge cases, a standard ERC20 implementation, and a complex
token contract with potential honeypot characteristics. Each
test case demonstrates different aspects of the system’s ana-
lytical capabilities.

1) SimpleCounter Analysis: The SimpleCounter contract
provides an excellent initial test case due to its straightforward
functionality but non-obvious behavior. Listing 3 presents a
key excerpt from the contract that demonstrates this vulnera-
bility.

1 function increment() public {
2 if (count % 10 == 0) {
3 count -= 1;
4 } else {
5 count += 1;
6 }
7 }

Listing 3. SimpleCounter Increment Function

The AI analysis correctly identified the unexpected decre-
ment behavior at multiples of 10 and generated appropriate
test cases. Listing 4 shows the dynamic analysis results, which
revealed several test failures.

1 echidna_decrement_behavior: passing
2 echidna_count_non_negative: passing
3 echidna_decrement_revert_at_zero: passing
4 echidna_increment_behavior: failed
5 echidna_multiple_increments: failed

Listing 4. SimpleCounter Test Results

The test failures in Listing 4 highlight the contract’s in-
tentionally anomalous increment behavior, demonstrating the
system’s ability to detect subtle behavioral patterns.

2) ERC20 Implementation Analysis: The ERC20 imple-
mentation test evaluated the system’s ability to analyze stan-
dard token functionality with minting and burning capabilities.
Listing 5 demonstrates a representative section of the imple-
mentation.

1 function mint(address to, uint256 amount) public
onlyOwner {

2 _mint(to, amount);
3 }
4

5 function burn(uint256 amount) public {
6 _burn(msg.sender, amount);
7 }

Listing 5. ERC20 Core Functions

Listing 6 presents the dynamic analysis results, which
revealed several critical properties.

1 echidna_decimals_constant: passing
2 echidna_transferFrom_balance_check: passing
3 echidna_only_owner_can_mint: passing
4 echidna_total_supply_constant: failed

Listing 6. ERC20 Test Results

These results successfully verified core token functionality
while identifying expected failures in supply invariants due to
legitimate minting capabilities.

3) Honeypot Contract Analysis: The system demonstrated
sophisticated detection capabilities when analyzing a complex
token implementation with potential honeypot characteristics.
Listing 7 illustrates the contract’s RFF mechanism and Pan-
cakeSwap integration.

1 function rff(address _from, address _to) internal {
2 if(!whitelist[_from] && !whitelist[_to]) {
3 require(!botlist[_from]);
4 require(!botlist[_to]);
5 // Additional checks omitted for brevity
6 if(LP != address(0)) {
7 IPancakePair(LP).approve(_from,1);
8 }
9 }

10 _addRFF(_to,1);
11 }

Listing 7. Honeypot Contract RFF Function

The AI analysis identified several critical security con-
cerns in this contract. Among these were multiple reentrancy
vulnerabilities due to external calls in the rff function, the
use of tx.origin for authorization, unused return values from

important external calls, complex and obscure variable naming
that hinders audit effectiveness, and potential for malicious
exploitation through whitelist manipulation.

The dynamic analysis confirmed these concerns through
multiple test failures, as shown in Listing 8.

1 echidna_transferFrom_balance_check: failed
2 echidna_balance_consistency: failed
3 echidna_total_supply_constant: failed
4 echidna_rff_botlist_check: failed

Listing 8. Honeypot Contract Test Results

B. Analysis Performance

Table II presents the evaluation metrics in all test cases,
demonstrating the effectiveness of the system.

TABLE II
PERFORMANCE METRICS ACROSS TEST CASES

Metric SimpleCounter ERC20 Honeypot
Unique Instructions 51 3034 4044
Unique Codehashes 1 1 1
Corpus Size 4 13 6
Test Coverage 92% 87% 76%

C. Key Findings

The experimental evaluation revealed several important
characteristics of the system. The system successfully identi-
fied both simple and more complex vulnerabilities in different
types of contracts. Property-based testing effectively explored
contract state spaces, revealing non-obvious behavioral pat-
terns. AI-driven analysis consistently identified and generated
tests for edge cases that might be overlooked in manual
testing. Finally, the system demonstrated strong capabilities in
identifying deceptive contract mechanisms through invariant
violations and security anti-patterns.

These results validate the effectiveness of combining AI-
driven analysis with property-based testing for smart contract
security evaluation.

VII. CONCLUSION

The system developed in this work represents a significant
step forward in making smart contract security testing more
accessible to the broader development community. By com-
bining artificial intelligence with established dynamic analysis
tools, we have demonstrated that automated security testing
of smart contracts can be made more accessible and cost-
effective while maintaining a high degree of effectiveness.
The primary achievement is the development of a system
that can automatically analyze smart contracts and generate
comprehensive Echidna test files through just two AI model
interactions.

A. Key Achievements

The system successfully bridges the gap between sophisti-
cated security testing tools and everyday developers through
several key innovations. By integrating static analysis tools
to enhance the AI’s understanding of the contract, we ensure
comprehensive coverage of potential vulnerabilities. The sys-
tem provides test coverage through targeted dynamic analysis
while delivering results in a format that developers can easily
interpret and act upon.

B. System Benefits

One of the most significant advantages of this system lies
in its cost-effectiveness. Traditional smart contract audits can
be prohibitively expensive, making them inaccessible to many
developers and small projects. The proposed system architec-
ture, which requires only two AI model calls per analysis,
keeps operational costs extremely low. This enables individual
developers to perform preliminary security assessments, allows
small projects to maintain ongoing security testing practices,
and empowers startups to validate their smart contract imple-
mentations before deployment.

C. Current Limitations

While the system provides valuable security insights, it
bears several important limitations. The statistical nature of
AI-driven analysis means that not all potential vulnerabilities
will be identified in every run. Developers must still review and
validate the generated tests and results, as the system should
be considered a complement to, rather than a replacement for,
thorough security practices. Regular testing across multiple
runs remains necessary to increase confidence in the results.

D. Future Developments

The primary direction for future enhancement lies in the
development of a specialized model for smart contract testing.
This development would involve collecting a large, labeled
dataset of smart contracts and their corresponding test cases.
Through the curation of successful test patterns and identified
vulnerabilities, along with fine-tuning of existing language
models on specialized datasets, we aim to improve the sys-
tem’s capabilities significantly. The development of evaluation
metrics specific to smart contract test generation will further
enhance the system’s effectiveness.

Another key area of future development is expanding plat-
form support to encompass a broader range of blockchain
ecosystems. Specifically, we plan to implement support for
Solana smart contracts written in Rust through integration
with the Trident [22] dynamic analysis framework, and Stacks
contracts written in Clarity using the Rendezvous [23] dy-
namic analysis framework. This multiplatform approach will
allow the system to serve a more diverse range of blockchain
developers and projects. Beyond these specific platforms,
we aim to progressively incorporate support for additional
blockchain languages and their respective testing frameworks,
making the system more versatile and comprehensive in its
coverage of the smart contract ecosystem.

E. Final Considerations

The demonstrated success in combining AI capabilities with
traditional security tools reveals promising opportunities to
improve various aspects of smart contract development and
testing. As these technologies mature, this integrated approach
is poised to become a fundamental component of smart
contract development workflows, enabling early detection and
remediation of potential vulnerabilities. Beyond the previ-
ously described Python architecture, we have made publicly
available a web platform, PRISM (https://getprism.dev), which
currently implements the AI-powered generation of guidelines
and test scenarios. Although the Web interface does not yet
run Echidna tests directly, it will serve as a platform for future
updates and expanded capabilities.

The potential for further improvement through specialized
model training and dataset collection points to an exciting
future where AI-driven security testing becomes increasingly
sophisticated and reliable. Thus, this work not only provides
immediate practical value but also lays the foundation for
future innovations in the field of smart contract security.

REFERENCES

[1] O. Alphand, M. Amoretti, T. Claeys, S. Dall’Asta, A. Duda, G. Ferrari,
F. Rousseau, B. Tourancheau, L. Veltri, and F. Zanichelli, “IoTChain:
A blockchain security architecture for the Internet of Things,” in 2018
IEEE Wireless Communications and Networking Conference (WCNC),
2018, pp. 1–6.

[2] J. Liu and Z. Liu, “A survey on security verification of blockchain smart
contracts,” IEEE Access, vol. 7, pp. 77 894–77 904, 2019.

[3] S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-
Hani, “Blockchain smart contracts: Applications, challenges, and future
trends,” Peer-to-Peer Networking and Applications, vol. 14, no. 5, pp.
2901–2925, 2021.

[4] M. Amoretti, A. Budianu, G. Caparra, F. D’Agruma, D. Ferrari, G. Pen-
zotti, L. Veltri, and F. Zanichelli, “Enabling Location Based Services
with Privacy and Integrity Protection in Untrusted Environments through
Blockchain and Secure Computation,” in 2022 IEEE 4th International
Conference on Trust, Privacy and Security in Intelligent Systems, and
Applications (TPS-ISA), 2022, pp. 114–123.

[5] H. Taherdoost, “Smart contracts in blockchain technology: A critical
review,” Information, vol. 14, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2078-2489/14/2/117

[6] K. Fukuchi, K. Naganuma, T. Suzuki, and T. Ohara, “ContractSafeguard:
Practical Bug Bounty Platform for Smart Contracts with Intel SGX,” in
2024 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2024, pp. 672–674.

[7] S. Banescu, M. Barboni, A. Morichetta, A. Polini, and E. Zulkoski,
“Enhanced mutation testing of smart contracts in support of code
inspection,” in 2024 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2024, pp. 558–566.

[8] Rekt News, “Rekt - leaderboard,” https://rekt.news/leaderboard/.
[9] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna:

effective, usable, and fast fuzzing for smart contracts,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 557–560.

[10] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius:
A data dependency-aware hybrid fuzzer for smart contracts,” in 2021
IEEE European Symposium on Security and Privacy (EuroS&P), 2021,
pp. 103–119.

[11] V. Wüstholz and M. Christakis, “Harvey: a greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1398–1409.

[12] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 531–548.

[13] Z. Zhang, B. Zhang, X. Wen, and Z. Lin, “Demystifying smart contract
vulnerabilities,” in ICSE, 2023.

[14] Z. Liu, M. Jiang, S. Zhang, J. Zhang, and Y. Liu, “A smart contract
vulnerability detection mechanism based on deep learning and expert
rules,” IEEE Access, vol. 11, pp. 77 990–77 999, 2023.

[15] T. Durieux, J. a. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 530–541.

[16] L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and Privacy
(SP), 2023, pp. 2444–2461.

[17] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and
Y. Cai, “Empirical evaluation of smart contract testing: what is the
best choice?” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2021. New
York, NY, USA: Association for Computing Machinery, 2021, p.
566–579. [Online]. Available: https://doi.org/10.1145/3460319.3464837

[18] Trail of Bits, “Slither: Static Analyzer for Solidity and Vyper,” https:
//github.com/crytic/slither.

[19] Anthropic, “Claude 3.5 Sonnet,” https://www.anthropic.com/news/claude-
3-5-sonnet.

[20] Trail of Bits, “Echidna: Ethereum Smart Contract Fuzzer,” https://github.
com/crytic/echidna.

[21] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, and J. Zou, “Gradio:
Hassle-Free Sharing and Testing of ML Models in the Wild,” arXiv
preprint arXiv:1906.02569, 2019.

[22] Ackee Blockchain Security, “Trident: Solana Smart Contract Fuzzer,”
https://github.com/Ackee-Blockchain/trident/.

[23] Stacks, “Rendezvous: Clarity Smart Contract Fuzzer,” https://github.
com/stacks-network/rendezvous.

